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Abstract

The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and
shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay
between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record
of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early
soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In
contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high
water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated
unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of
plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The
ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum
advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic
ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a
substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus
levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and
transform the surface of the planet.
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Background
The establishment of land plants in the terrestrial envir-
onment brought about a fundamental transformation of
the Earth’s surface [1-7]. It involved new soils and soil
microbiota, greatly enhanced biological weathering and
new controls on landforms and erosion, a new food
chain, and new habitats for animals that increased their
diversity. It also enhanced the influence of photosynthe-
sizers on the planet's atmosphere, increasing oxygen
concentrations and drawing down carbon dioxide by
biological weathering [1]. The Earth’s surface biomass is
now dominated by land plants [8], and is so extensive
that the occurrence of life on Earth would be evident to
observers from space [9]. The establishment of this high
surface biomass represented a crucial shift from a
planet dominated by subsurface life to one in which
surface life became proportionately significant. This
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change intrinsically involved an increase in the pro-
portion of life ultimately supported by photosynthesis
(carbon dioxide) rather than hydrogen.
Understanding the colonization of the land surface by

plants requires us to identify if special geochemical circum-
stances had arisen to promote it, or if it was simply an as-
pect of a wider diversification of life into new niches. This
event is dated to the early/mid-Ordovician. There are sev-
eral records of Ordovician plant spores, extending back to
an Arenig (Floian; 476 Ma) occurrence of liverwort-type
spores [10-13], and fungal hyphae in the Ordovician could
have been closely associated with evolving plants [14,15].
Plant growth is envisaged to have been sufficiently exten-
sive and well-anchored to trigger the end-Ordovician glaci-
ation by weathering-drawdown of CO2 [7]. An essential
requirement to allow colonization of the subaerial environ-
ment was the availability of nutrients in the soil rather than
through water. The ready availability of nutrients requires
some kind of soil, in which mineral matter can dissolve
into pore waters at a fast rate. For much of Earth’s history,
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Figure 1 Intensity of volcanic activity through the Phanerozoic.
Activity represented by relative changes in volcanic arc volume [17],
and frequency of ash bed deposition [18]. Ordovician peak in
intensity is coincident with earliest records of plants [11,12], and
decline in atmospheric CO2 (RCO2 is concentration compared to
present atmosphere: [1]). Consequence is a shift of biomass from
subsurface to surface. True roots are known from the Siluro-
Devonian, but an earlier soil anchoring system is possible [52].
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the land surface was bare rock or thin microbial crust [2],
and soils were weathering products that somehow survived
the fast rate of erosion possible when there were no stabil-
izing land plants. Occasionally, volcanic ash fall-out con-
tributed to the surface detritus. However, tuff (lithified
volcanic ash) formation was particularly sustained and
widespread in the Ordovician. We show here that the
chemistry of Ordovician tuffs indicates their potential role
in supplying nutrients to the earliest land plants. Data sets
(see Additional file 1 for detailed data and sources) were
chosen based upon the availability of multiple measure-
ments, data required to calculate CIA (chemical alteration
index) values, details of analytical methods, and lack of
high-grade metamorphism. CIA values are given as the
ratio Al2O3/(Al2O3+CaO+Na2O+K2O) [16].

Results and discussion
Ordovician volcanic activity
The quantification of volcanic activity on a global scale
is difficult in deep geological time, but two databases
assembled as proxies for global volcanic activity, based
on island arc volcanism [17], and numbers of ash beds
[18] both highlight the Ordovician as a period of anom-
alous volcanism (Figure 1). This was one of the most in-
tense periods of volcanic activity in the Phanerozoic, and
the first intense period following the ‘explosion’ of life at
about the Precambrian-Cambrian boundary. This activ-
ity has been attributed to the formation of a superplume
[19], accelerated sea floor spreading [20], and global
reorganization of plates following the assembly of
Gondwana [21]. An abundance of ophiolites containing
Ordovician volcanic rocks has allowed the mapping of
the Ordovician system of subduction zones and related
volcanic arcs (Figure 2). There were multiple volcanic
arcs, like the West Pacific today, in several parts of the
globe, including both margins of the Iapetus Ocean,
central Asia and the Andean margin of Gondwana
(Figure 2), and they had great strike-length [21]. The ex-
tensive arcs are associated with anomalous deposits of
volcanic ash (lithified as tuff, bentonite). Large volumes
of ash are a product of explosive volcanism that is typ-
ical of periods of accelerated subduction, as at present,
and especially in the Ordovician [18,22,23]. Ash from
volcanic arcs was carried by winds hundreds to thou-
sands of kilometres into continental interiors [24].
Tuffs and basaltic lavas occur through the entire

Ordovician and into the Silurian, but are particularly
widespread in the Arenig-Llanvirn and Caradoc (Floian-
Dapingian and Sandbian respectively) [25]. The Caradoc
tuffs in particular occurred on a huge scale, correlated
across the Iapetus Ocean from Laurentia to Baltica
(Figure 2), and reaching a volume of over a thousand
cubic kilometres [22], more than an order of magni-
tude greater than from the Krakatoa eruption of 1883,
the greatest known eruption of historical times. The
mere survival of macroscopic tuff beds suggests excep-
tionally large eruptions, as otherwise the ash would be
mixed into the background sediment [18,22,23]. Much
ash would have been deposited in the ocean, now largely
lost from the geological record by subduction. However,
much also fell in shallow water and terrestrial environ-
ments, hence their widespread preservation. The expos-
ure of Ordovician volcanic rocks to contemporary
subaerial weathering is evidenced by reddened basalts
and even palaeosols on basalts [26]. Extensive weathering
of these volcanic rocks is also implicated in global iso-
topic and climatic signals [27,28].
Volcanic ash chemistry and plant growth
The value of volcanic ash to plant life is implied by the
fact that the most densely populated area of the world in
Indonesia, and other high-density populations in Africa,
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Figure 2 Palaeogeographic reconstruction of the Southern Hemisphere at about 470 Ma. Ordovician tuffs recorded on all major
continents, and especially in vicinity of volcanic arcs. Map is modified from [61]; data sources in Additional file 1.
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are on young volcanic ash with very high soil productiv-
ity [29], the use of crushed tuffs as fertilizers [30,31], and
the rapid recovery of plants on ash-covered terrains fol-
lowing volcanic eruptions [29]. In even the short time
elapsed since the outpouring of troublesome ash from
Eyjafjallajökull, Iceland in 2010, there have been several
reports from Icelandic farmers describing increased plant
yields and the deliberate use of the ash as a fertilizer
[32,33]. The fertilizing potential of volcanic ash is also
evident in its effects on phytoplankton in the oceans
[34,35]. Volcanic ashes, and associated basaltic lavas, are
relatively rich in the nutrients required by plants, includ-
ing iron, calcium, potassium, magnesium, sulphur, nitro-
gen and phosphorus. However the two elements most
likely to be limiting are phosphorus and nitrogen [29,36].
Phosphorus concentrations in modern ashes include

0.15% and 0.17% P2O5 in ashes from Japan and the
Philippines respectively, both above the crustal mean of
0.13%, and both adequate for plant growth [37]. Experi-
ments using volcanic ash as a plant growth substrate
have demonstrated its importance as a source of phos-
phorus [38]. Data from Ordovician tuffs show that the
majority have P2O5 contents greater than the crustal
mean (Figure 3), and that in mixed volcanic-sedimentary
successions, tuffs are more phosphorus-rich than the
normal sediments [39,40]. Considering that these values
may be depleted from original concentrations by leach-
ing, they indicate that the Ordovician ashes contained
adequate phosphorus for plant growth. The phosphorus
in these rocks is, like today, mainly in the form of
apatite. Apatite is relatively soluble in (acidic) rain water,
so can be readily liberated from ash into soil solutions
[37]. The survival of much apatite in Ordovician tuffs
today shows that they had potential for long-term re-
lease of phosphorus.
Nitrogen availability is less easy to quantify in ancient

systems, as most nitrogen is introduced to ashes by rain
water or by fixation from symbiotic micro-organisms
[37]. Nevertheless, there is evidence that microbial com-
munities were colonizing soils before the Ordovician, in
the Precambrian [2,41-43] and nitrogen fixation was
already comparable to the present day, including in ter-
restrial systems [44]. More specifically, the land surface
was probably colonized already by fungi and lichens
[42,43,45], and they and the primitive liverwort plants
established in the Ordovician [10] are all capable of
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Figure 3 Phosphorus contents (wt.% P2O5) for Ordovician tuffs. Most values exceed mean crustal value of 0.13%. Data set for Ireland [40]
shows higher values in Ordovician tuffs compared to contemporaneous sediments. Detailed data and sources in Additional file 1.
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nitrogen fixation. Mycorrhizal fungi are believed to have
been instrumental to the colonization of land by plants
by symbiotic nutrient acquisition [46], in a relationship
established by Ordovician times [14,15,45,47]. These
fungi inoculate volcanic ash by wind following modern
eruptions [48]. Nitrogen fixation might be enhanced by
volcanic lightning in ash clouds [49,50], and nitrogen de-
livery would also be possible through weathering of the
ashes. There was, therefore, strong potential for nitrogen
availability in ash to the earliest plants.
The physical attributes of volcanic ash allow good drain-

age, but also high retention of plant-available water
[37,51], which would have been essential to the earliest
plants occupying moist lowland areas. It also provides ex-
cellent ‘tilth’, the physical condition related to fitness as a
seed-bed [37]. The combination of water and nutrient
availability would have made ashes a favourable setting for
the seeding of primitive plants. Although the oldest true
roots recorded to date are of Silurian age, some form of
soil anchoring system which absorbed nutrients is prob-
able from the earliest stages of land colonization [52,53].
The permeable but water-retaining soils that support
plants widely today would not form until plant roots
themselves had evolved to secrete rock-consuming or-
ganic acids and stabilize the residual grains.
The importance of volcanic ash, via plants, to the
whole food chain, is exemplified today in an extensively
studied ecosystem in the Serengeti, Tanzania. High phos-
phorus levels in the ash are conferred to the grassland
vegetation, which is consumed by wildebeests, who are
eaten by animal predators and whose dung supports
huge numbers of insects [54,55].

Volcanic ash compared to earlier soils
The geochemical contrast between earlier, Precambrian,
soils and the Ordovician volcanic ashes is evident in
values for CIA (Chemical Index of Alteration). In
Precambrian soils, alkalis (K, Na, Ca), and other, add-
itional, elements not used to calculate the alteration
index, were typically all leached to leave high CIA values
of 75 to 100 [56] (Figure 4). In Ordovician tuffs this de-
pletion is not observed, and even allowing that some
tuffs may be diagenetically enriched in potassium [24],
there was clearly a greater nutrient retention in the ashes
(Figure 4). The significance of the lower CIA values
(mostly 60–70) for the Ordovician tuffs is emphasized by
higher values (70–80) for Ordovician siliciclastic deposits
in several parts of the world [57-59]. The tuffs were a
particularly fertile protolith. Similarly, modern ashes have
relatively low CIA values [60] (Figure 4). Given that tuff
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beds were deposited almost instantaneously, they represent
a flux of phosphorus and other nutrients to the surface
greatly in excess of that during normal sedimentation or
soil formation. Progressive exposure and erosion of the tuffs
could have delivered nutrient-rich material available to
plants at the surface over a prolonged time.

Conclusion
There is clearly a coincidence between the earliest
records of plants and the timing of exceptional volcanic
activity and ash-fall. Ash was not essential to plant
growth, but was widely available, and must have received
a substantial load of the available spores. Where tuffs
survived subaerial erosion, they could have remained at
the land surface for prolonged periods, as found in
highly populated regions today [29], so that repeated in-
oculation by spores was unavoidable. Given its beneficial
chemical and physical properties, spores embedded in
ash must have had a relatively favourable chance of ger-
mination. The strong suitability of these volcanic depos-
its to support plant growth suggests that they deserve
detailed scrutiny for early plant fossils. The compaction
of highly porous ashes during lithification to tuffs will
make such evidence difficult to discern, and the well-
drained environment of ashes is not conducive to fossil
preservation. However, rare palaeosols formed on
Ordovician basalts show mineral alteration attributed to
nonvascular plants [26], providing evidence that volcanic
rocks may indeed have been suitable substrates and
thereby played an important role in the colonization of
land by plants.

Additional file

Additional file 1: Ordovician ash geochemistry and the
establishment of land plant [62-84].
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