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Abstract 

Green rust (GR) is a potentially important compound for the reduction of heavy metal and organic pollutants in 
subsurface environment because of its high Fe(II) content, but many details of the actual reaction mechanism are 
lacking. The reductive capacity distribution within GR is a key to understand how and where the redox reaction occurs 
and computational chemistry can provide more details about the electronic properties of green rust. We constructed 
three sizes of cluster models of single layer GR (i.e., without interlayer molecules or ions) and calculated the charge 
distribution of these structures using density functional theory. We found that the Fe(II) and Fe(III) are distributed 
unevenly in the single layer GR. Within a certain range of Fe(II)/Fe(III) ratios, the outer iron atoms behave more like 
Fe(III) and the inner iron atoms behave more like Fe(II). These findings indicate that the interior of GR is more reductive 
than the outer parts and will provide new information to understand the GR redox interactions.
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Introduction
Green rusts (GR) are a family of Fe(II), Fe(III) layered 
double hydroxides (LDH) that frequently form in oxygen-
poor, Fe(II)-rich soils and waters [1–5]. GRs are com-
posed of positively charged Fe(II), Fe(III) hydroxide layers 
that alternate with hydrated interlayers containing anions 
(e.g.  SO4

2−,  CO3
2−, Cl,− etc.) and occasionally cations for 

charge compensation. GRs are represented by the gen-
eral formula  [FeII

(1-x)FeIIIx(OH)2]x+[(x/n)An−,mH2O]x−, 
where x represents the molar fraction of the ferric ion 
that usually ranges from 0.25 to 0.33 and  An− denotes 
intercalated anions [2, 6–8]. GRs are classified into two 
types based on the anion they intercalate: [1] GR type 1 
has a rhombohedral unit cell and intercalates planar or 

monatomic anions (e.g.,  Cl−,  CO3
2−) [9, 10]. GR type 2 

has a hexagonal unit cell and intercalates three-dimen-
sional anions (e.g.,  SO4

2−) [11].
GRs have been widely investigated for removal of 

organic and inorganic contaminants from waters and 
soils [12–27] (e.g.,  SeO4

2− [13],  U6+ [15],  TcO4
− [17], 

 Ag+,  Au3+,  Cu2+ and  Hg2+ [18],  CCl4 [16, 22, 23],  NO3
− 

[14],  CrO4
2− [24–27]) due to their excellent reducing 

capacity. In these studies, researchers have proposed 
several mechanisms to explain redox reactions by GRs. 
[28] For example, Hansen et  al. [14] suggested that 
nitrate  (NO3

−) reduction by chloride GR is faster com-
pared to other GRs because chloride interlayer exchange 
by nitrate, which is then reduced in the interlayer. Simi-
larly, several studies argued that the reduction of chro-
mate  (CrO4

2−) occurs in the GR interlayer following 
anion exchange with chromate [25, 29–31]. In contrast, 
Thomas et  al. [26] proposed that chromate is directly 
reduced at sulphate GR particle surface sites by electrons 
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shuttled from the particle’s interior via electron hopping 
[32]. Also, a similar surface process was propsed by Choi 
et al. [21] and O’Loughlin et al. [15] for the reduction of 
perchloroethene  (C2Cl4) and U(VI) by GR, respectively. 
Indeed,  C2Cl4 and U(VI) are unlikely to intercalate into 
the GR interlayer. Also, the TEM images in O’Loughlin 
et al. [15] show  UO2 nanoparticles decorating GR particle 
edge surfaces after reaction further supporting reduction 
reaction at GR particle edges [26, 32]. Lastly, recent stud-
ies have shown that GR cannot reduce chlorinate ethenes 
[33], however, if a catalyst such as bone char is added to 
reaction, chlorinated ethenes can be rapidly reduced by 
GR, which is contrast to previous study that shows pure 
GRs cannot reduce chlorinated ethenes [33–35], suggest-
ing that electron transfer can occur in GRs.

These examples demonstrate that despite many experi-
mental studies on GR reductive capacity with contami-
nants, there is still much confusion about where on GR 
particles reduction reactions occur, and whether GR 
hydroxide sheets can shuttle electrons from their interior 
to the exterior. To unravel the active redox sites on GR 
hydroxide sheets, we must gain a better understanding of 
GR electronic properties at a molecular level and evalu-
ate the distribution of Fe(II) and Fe(III) atoms within sin-
gle GR layers. In this study, we constructed 3 different 
sized cluster models of a single GR layer and then ana-
lyzed its electronic properties using density functional 
theory (DFT). Specifically, we evaluated the relation-
ship between spin state and total electronic energy and 
used an implicit solvent model to take into account the 
interlayer water between the GR hydroxide sheets. The 
obtained results give new insights into the distribution of 
Fe(II) and Fe(III) species in GR hydroxide sheets, allow-
ing to make suggestions of GR active redox sites and their 
role in reactions with contaminants.

Calculation methods
Calculation methods
All geometry optimizations were performed with the 
Turbomole program, v6.5 [36]. The COSMO implicit sol-
vent model [37] with an infinite dielectric constant was 
combined with Becke–Perdew (BP) functional [38, 39] 
and triple-ζvalence plus polarization (TZVP) [40] basis 
set for all calculations. To solve the convergence difficul-
ties of the calculation that result from the high degree of 
freedom in the models, a higher orbital shifting param-
eter (0.3) was applied to all calculations.

GR structure model
The GR structure was based on crystallographic data for 
sulphate GR  (GRSO4) provided in Christiansen et  al. [3] 
with following formula: NaFe(II)6Fe(III)3(SO4)2(OH)18.
12H2O.  GRSO4 particles form hexagonal platelets, which 
consist of hydroxide layers where all octahedral sites are 
occupied, and the interlayer spaces are filled with octa-
hedrally hydrated sodium and sulphate ions, along with 
additional water. Here, we only focus on the hydroxide 
sheet structure (i.e., Fe(II), Fe(III) and  OH− ions), for 
which we constructed three different sized hexagonal 
clusters representing single GR hydroxide layers, shown 
in Fig. 1. We modified the edges to ensure that every Fe 
atom was coordinated to O atoms of six hydroxyl groups. 
The small (GR2 × 6), medium (GR3 × 6) and large 
(GR4 × 6) cluster have 2, 3 and 4 Fe atoms, respectively, 
located on each of the 6 edges (Fig. 1a).

We define the ratio of Fe(II) to Fe(III) atoms in the GR 
cluster by applying a specific charge to the clusters. This 
in turn defines the number of unpaired electrons (Fe 
atoms are assumed to be in high spin states, which means 
Fe(II) has 4 unpaired electrons and Fe(III) has 5 unpaired 
electrons; discussed in Sect.  2.3). The tested cluster 
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Fig. 1 a Schematic representation of single layer GR clusters with different sizes: (S) small (GR2 × 6), (M) medium (GR3 × 6) and (L) large (GR4 × 6). 
The brown dots represent Fe atoms. b Top and c side view of single layer GR clusters, where Fe atoms are colored brown, O atoms red and H atoms 
white
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charges, Fe(II)/Fe(III) ratios and numbers of unpaired 
electrons are shown for each cluster in Table 1.

Multiplicities assumption
To verify our assumption of Fe electronic occupation, 
the energy differences between a set of possible spin 
states for the built GR cluster models were calculated and 
compared. Specifically, we calculated all possible spin 
states for GR2 × 6(− 5) (i.e., GR2 × 6 with applied cluster 
charge of −  5), while for GR2 × 6(−  6), GR3 × 6(−  10), 
and GR4 × 6(−  9), we only calculated a low, intermedi-
ate and high spin state as shown in Fig.  2. Across all 
performed calculations, the high spin states yield the 
lowest energy compared to the intermediate and low spin 
states. Looking at GR2 × 6(−  5), where all possible spin 
states were calculated, the trends are not perfectly lin-
ear between energy and spin state, however, the general 
trend that the highest spin state have the lowest energy 
is still evident. These results indicate that for all three GR 
cluster models, the high spin state is thermodynamically 
the most favorable state, which is also consistent with 
Hund’s rule for single atoms.

A previous study showed that standard exchange–cor-
relation functionals disfavour high spin state in iron com-
plexes, whereas hybrid and some meta-GGA functionals 
are generally better at predicting the correct spin state 
[41]. Despite this, our calculations still show that our 
models prefer to be in high spin states. However, we still 
performed a comparison study of different functionals’ 
preference of spin state for our models. We compared 
BP86 with 6 other functionals, which represent three 
basically different approaches of DFT functionals: B-LYP 
[39, 42] and PBE [43] represent standard exchange–cor-
relation functionals, B3-LYP [42, 44–46], PBE0 [47] and 
TPSSh [48] represent hybrid functionals, and TPSS [49] 
represents meta-GGA functional. We used GR2 × 6(− 8) 
as the example, calculated its fully optimized minimum 
energy at different spin states using different function-
als with same TZVP basis set. Figure 3 shows the energy 
differences for GR2 × 6(−  8) when iron atoms are at 
low, intermediate and high spin states, with different 
functionals. For B-LYP and PBE, the intermediate spin 
state has the minimum energy, where the energy differ-
ences between intermediate and high spin state are very 

small. All hybrid functionals gave good support for the 
high spin state, especially PBE0, for which the high spin 
state has an energy that is 5.11 eV (i.e., 117.84 kcal/mol) 
lower than the intermediate spin state. B-P only slightly 
disfavour high spin state compared to hybrid function-
als, which is consistent with the previous study [41], 
however, the energy of high spin state is still significantly 
lower than the energy of low and intermediate spin state, 
qualitatively reproducing the spin behaviour of more 
accurate hybrid functionals. Compared to B-P, TPSS dis-
favours high spin state considerably more. In our case, 
the B-P functional show good quality for predicting iron 

Table 1 Range of applied Fe(II)/Fe(III) ratios, charges and 
numbers of unpaired electron (NUE) for GR cluster model

The details of all tested conditions are given in the Additional file 1: Tables 
S1–S11

GR cluster model Fe(II)/Fe(II) ratio Charge NUE

GR2 × 6 0/7 to 7/0 − 3 to ‑10 35 to 28

GR3 × 6 0/19 to 19/0  + 3 to ‑16 95 to 76

GR4 × 6 0/37 to 37/0  + 15 to ‑22 185 to 148

Fig. 2 Cluster free energy differences between spin states for the GR 
clusters. GR2 × 6(− 5): from left to right are spin states with unpaired 
electrons from 1 to 33 (i.e., 1, 3, 5…). GR2 × 6(− 6), GR3 × 6(− 10) and 
GR4 × 6(− 9): from left to right are low, intermediate and high spin 
states respectively. For all models, the energies of the highest spin 
states are set to be 0

Fig. 3 Energy differences between low, intermediate and high spin 
states of GR2 × 6(− 8) calculated using different DFT functionals
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spin state, in qualitative agreement with the more accu-
rate hybrid methods. The use of the BP functional also 
allows us to apply solvation treatment using COSMO-RS 
theory. [50]

Results and discussion
Electronic properties of the single layer GR3 × 6 model
For the GR3 × 6 cluster, 20 different cluster charge mod-
els were calculated. Models with cluster charge from 
-12 to 0, i.e., Fe(II)/Fe(III) ratios are from 15/4 to 3/16, 
were obtained by carrying out BP/TZVP optimizations, 
while models with charges from -13 to -16 yielded dis-
torted structures, and models with charge from + 1 to + 3 
exhibited electronic occupations that were not in the 
ground state. GR3 × 6 with charges from -13 to -16 and 
from + 1 to + 3 were thus not analyzed here, but are fur-
ther discussed in the supporting information, Additional 
file  1: Text S1  and Figure S1. In the following section, 
we will use the GR3 × 6 model with applied -10 charge, 
GR3 × 6(−  10), as an example to discuss the structure 
and electronic property of the single layer GR model. For 
this cluster, the Fe(II)/Fe(III) ratio is approximately 2.2 
which matches the Fe(II)/Fe(III) ratios typically observed 
for experimentally produced sulphate GR [3].

The optimized GR3 × 6(−  10) structure is hexago-
nal, with all Fe atoms approximately in the same plane 
(Fig.  4). Given that Fe(III) has more unpaired electrons 
than Fe(II), we can identify the location of Fe(II) and 
Fe(III) ions in the structure by assessing the number of 
unpaired electrons (spin states) in every Fe atom using 
Mulliken population analysis. The results of this analy-
sis for GR3 × 6(− 10) (Fig. 5) show that Fe atoms at the 
edges of the simulated GR layer have a higher number 
of unpaired electrons (i.e., higher spin states) compare 
to Fe atoms in the interior of the GR layer, indicated by 
a gap of 0.1. Additionally, the central Fe atom seems to 
have the lowest number of unpaired electron (i.e., lowest 
spin state). Thus, the reducing capacity of outer Fe atoms 
is lower compared to inner Fe atoms, with the central Fe 
atom having the highest reducing capacity. This means 

that the reductive capacity across the GR sheet structure 
is quite uneven, with the inner Fe atoms having Fe(II) like 
character, while the outer Fe atoms are more Fe(III) like.

To verify the observations made for GR3 × 6(−  10), 
the distribution of unpaired electrons was also cal-
culated for all other stable GR3 × 6 models (i.e., with 
charge from -12 to 0 i.e., Fe(II)/Fe(III) ratio from 
15/4 to 3/16) shown in Fig.  6. Identical to the results 
of GR3 × 6(−  10), the number of unpaired electrons 
is considerably higher (i.e., spin states are higher) 
for outer Fe atoms compared to inner Fe atoms in all 

Fig. 4 a Top and b side view of GR3 × 6 with a charge of ‑10

Fig. 5 Number of unpaired electrons for Fe atoms in the 
GR3 × 6(− 10) model structure, ordered according to decreasing 
number of unpaired electrons. Fe atoms labeled with O, I and C refer 
to outer, inner and central atoms, respectively

Fig. 6 Numbers of unpaired electrons for Fe irons atoms in all 
obtained GR3 × 6 models. Fe atoms labeled with O, I and C refers to 
outer, inner and central atoms, respectively
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13 model structures. Note that the clear drop in spin 
state between outer and inner Fe atoms is also still vis-
ible when averaging the number of unpaired electrons 
across all outer and inner Fe atoms, respectively, or by 
comparing minimum and maximum values for outer 
and inner Fe atoms, respectively (Table 2). Also, in most 
models (except for GR3 × 6(− 11) and GR3 × 6(− 12)), 
the central Fe atom still exhibits the lowest spin state 
as initially observed for GR3 × 6(− 10) (Fig. 6, Table 2). 
Overall, all 13 GR3 × 6 models reaffirmed the uneven 
distribution of reducing capacity (i.e., Fe(II) and Fe(III) 
atoms) across the single GR sheet. We note that this 
trend was consistent across the wide range of cluster 
charge (Fe(II)/Fe(III) ratio) we investigated.

Cluster size effects
To ensure results observed for the GR3 × 6 models are 
not dependent on cluster size, we performed similar 
electronic property analyses for a smaller (GR2 × 6) and 
a larger (GR4 × 6) GR single layer structure, shown in 
Fig. 7a, b. For those two cluster sizes, 8 and 38 Fe(II)/
Fe(III) ratios were examined, and 5 and 23 yielded ther-
modynamically stable structures after geometry opti-
mization, respectively.

The spin state distributions calculated for the GR2 × 6 
and GR4 × 6 models showcase the same drop in the 
number of unpaired electrons between outer and cen-
tral iron atoms as shown for the GR3 × 6 model. This 
is also verified by comparison of minimum and maxi-
mum spin values, or average values (Tables S2 and S4 
in Additional file  1) has done for the GR3 × 6 model. 
Thus all three different sized models support the same 
electronic configuration for GR hydroxide sheets, 
with Fe(II) like atoms positioned in the middle of the 
GR sheet and Fe(III) like atoms on GR sheet edges. 
The consistency in our observations between differ-
ent investigated Fe(II)/Fe(III) ratios and cluster sizes 
strongly suggest that our models provide a reasonable 

Table 2 Relative differences in the number of unpaired electrons (NUE) between outer, inner and central Fe atoms for the simulated 
GR3 × 6 models

The cluster charges are differing from 0 to − 12 (GR3 × 6(0) to GR3 × 6(− 12)), i.e. Fe(II)/Fe(III) ratios from 3/16 to 15/4. Δ1O-I denotes the difference between minimum 
and maximum NUE of outer and inner Fe, respectively; Δ2O-I denotes the difference between average NUEs of outer and inner Fe atoms, respectively; Δ1I-C denotes the 
difference between minimum and maximum NUE of inner and central Fe atoms, respectively; Δ2I-C denotes the difference between average NUEs of inner and central 
Fe atoms, respectively. The NUE details of GR3×6 models can be seen in the Additional file 1: Table S3

0 − 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11 − 12 Ave

Δ1O‑I 0.012 0.071 0.101 0.102 0.097 0.094 0.085 0.087 0.071 0.065 0.081 0.068 0.051 0.076

Δ2O‑I 0.046 0.107 0.134 0.137 0.137 0.136 0.132 0.136 0.119 0.117 0.116 0.112 0.135 0.132

Δ1I‑C 0.077 0.072 0.048 0.033 0.054 0.055 0.054 0.041 0.043 0.030 0.017 -0.016 -0.020 0.048

Δ2I‑C 0.081 0.078 0.067 0.043 0.061 0.059 0.059 0.056 0.052 0.042 0.030 0.010 0.044 0.052

Fig. 7 Number of unpaired electrons for the Fe atoms in the stable 
a GR2 × 6 models (all 5 shown) and b GR4 × 6 models (only 5 shown 
for clarity, all 23 models are shown in Additional file 1: Figure S2). Fe 
atoms labeled with O, I and C refer to outer, inner and central atoms, 
respectively
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description of the electronic properties of a single GR 
hydroxide sheet.

Spin contamination
In open-shell system, unrestricted calculations have dif-
ferent set of orbitals for alpha electrons and beta elec-
trons. In this case, spin contamination can occur because 
the expected value of total spin angular momentum 
operator,  S2, is no longer commensurate with expected 
spin state of the system [51]. A large spin contamina-
tion indicates a failure of the applied computational 
method. However, because  S2 is a two-electron operator, 
its meaning in density functional theory is diffuse. A pre-
vious study argued that  S2 can be assigned a diagnostic 
value also within DFT [52, 53], and we would like to pro-
vide the details of spin contamination in our green rust 
models.

The spin contamination for the three different sized 
GR models was determined as the difference between 
the calculated  S2 and the ideal value of S(S + 1), i.e., 
ΔS2 =  S2-S(S-1). Calculated ΔS2 values (Table 3) are very 
small, especially considering the high spin states in the 
GR models calculated here. It is worth mentioning that 
the spin contamination increases as the GR model size is 
increased, but it decreases with as increase in multiplici-
ties within the same sized GR model. Nevertheless, the 
highest ΔS2 value of 0.25 obtained for GR4 × 6(−  16) is 
still negligible considering its large number of unpaired 
electrons.

We also evaluated the effect of different DFT func-
tionals on spin contamination using the GR2 × 6(−  8) 
model as an example (Table  4), second order Møller-
Plesset (MP2) perturbation theory [54–57] also applied 

to determine the spin contamination. All methods show 
same result of a low degree of spin contamination, with 
the B-P functional only slightly higher than the hybrid 
functionals.

Mulliken and natural bond orbital analysis
Mulliken method is known as the oldest and cheapest 
way to obtain spin density and atomic charges, but it is 
also criticised for its lacking polarization effects and basis 
set dependence [58, 59]. Natural bond orbital (NBO) 
analysis is considered to be more reliable because it takes 
electron density and polarization effects into account. 
Hence, we evaluated the suitability of both the Mul-
liken and the NBO population analysis. The Mulliken 
unpaired electrons and NBO spin density for Fe atoms in 
the three GR models, GR2 × 6(−  8), GR3 × 6(−  10) and 
GR4 × 6(−  10), is shown in Fig.  8 (at B-P/TZVP level). 
Although absolute values between the Mulliken and 
NBO spin density differ, the spin density distributions 
among iron atoms in our models are basically identical.

Functional effects
The spin density distributions were calculated for 
GR2 × 6(− 8) and GR3 × 6(− 8) using the different DFT 
functionals discussed earlier (“Multiplicities assump-
tion” section) and they are shown in the Additional 
file  1: Figures  S3 (GR2 × 6(−  8) with different function-
als), S4 (GR2 × 6(− 8) with MP2) and S5 (GR3 × 6(− 10) 
with PBE0). Two types of spin density distributions are 
observed: (1) The pure functionals, BLYP, PBE and TPSS, 
produced similar distributions as the B-P functional 
in that the center Fe atoms show the lowest spin den-
sity, while the outer Fe atoms show relatively high spin 

Table 3 ΔS2 values for all stable GR2 × 6, GR3 × 6 and GR4 × 6 models calculated using B‑P functional

Model ΔS2 Model ΔS2 Model ΔS2 Model ΔS2 Model ΔS2 Model ΔS2

GR2 × 6(− 4) 0.03 GR3 × 6(− 2) 0.09 GR3 × 6(− 9) 0.10 GR4 × 6(+ 3) 0.18 GR4 × 6(− 4) 0.20 GR4 × 6(− 11) 0.22

GR2 × 6(− 5) 0.03 GR3 × 6(− 3) 0.09 GR3 × 6(− 10) 0.11 GR4 × 6(+ 2) 0.18 GR4 × 6(− 5) 0.20 GR4 × 6(− 12) 0.23

GR2 × 6(− 6) 0.03 GR3 × 6(− 4) 0.09 GR3 × 6(− 11) 0.11 GR4 × 6(+ 1) 0.18 GR4 × 6(− 6) 0.20 GR4 × 6(− 13) 0.22

GR2 × 6(− 7) 0.04 GR3 × 6(− 5) 0.10 GR3 × 6(− 12) 0.13 GR4 × 6(0) 0.18 GR4 × 6(− 7) 0.21 GR4 × 6(− 14) 0.23

GR2 × 6(− 8) 0.05 GR3 × 6(− 6) 0.10 GR4 × 6(+ 6) 0.17 GR4 × 6(− 1) 0.19 GR4 × 6(− 8) 0.21 GR4 × 6(− 15) 0.23

GR3 × 6(0) 0.08 GR3 × 6(− 7) 0.10 GR4 × 6(+ 5) 0.17 GR4 × 6(− 2) 0.19 GR4 × 6(− 9) 0.21 GR4 × 6(− 16) 0.25

GR3 × 6(− 1) 0.08 GR3 × 6(− 8) 0.10 GR4 × 6(+ 4) 0.17 GR4 × 6(− 3) 0.19 GR4 × 6(− 10) 0.21

Table 4 ΔS2 values of GR2 × 6(− 8) with different DFT functionals and MP2 method. All the results were obtained with fully optimized 
geometry for the corresponding method

B-P B-LYP PBE B3-LYP TPSSh PBE0 TPSS MP2

ΔS2(GR2 × 6(− 8)) 0.047 0.042 0.051 0.038 0.039 0.038 0.040 0.049
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states; (2) The hybrid functionals, B3LYP, TPSSh, PBE0 
and MP2, include exact exchange, and they show only 
two discreet values (except for TPSSh) as opposed to the 
smeared out electronic distribution of pure DFT func-
tionals. These two values can be identified as Fe(III) and 
Fe(II). All high spin Fe(III) are located on GR sheet edges, 
meaning that all inner Fe atoms are Fe(II).

Although the pure DFT functionals do not localize the 
electrons correctly, the distribution trends agree with 
trends observed for hybrid functionals, which localize the 
electrons accurately into Fe(II) and Fe(III). Additionally 
in Additional file 1: Figures S3 and S4, the two Fe atoms 
that are predicted to be Fe(III) by the hybrid functionals 
are the two atoms with the highest calculated spin in the 
pure DFT calculations. Thus, all functionals investigated 
(pure and hybrid) reveal the same tendency that the outer 

Fe atoms on average have higher spin state compared to 
inner Fe atoms. The calculated spin density of the larger 
cluster GR3 × 6(−  10) with PBE0 also shows a consist-
ent performance, with all six Fe(III) located on the edge 
of the cluster. If the Fe(III) were randomly distributed, 
there would only be a 3% likelihood that all Fe(III) would 
happen to be located at the edge sites, strengthening our 
conclusions about Fe(III) preferring to be locate at the 
edge sites.

Conclusions and implications
In this work, three different sized cluster models of sin-
gle GR hydroxide layers were built to study their elec-
tronic properties using density functional theory. The 
calculations showed that a high spin state is favored ther-
modynamically for the single layer GR model and that 

Fig. 8 The comparison of spin density of Fe atoms obtained by Mulliken and Natural Bond Orbital (NBO) population analysis for a GR2 × 6(− 8), b 
GR3 × 6(− 10) and c GR4 × 6(− 10)
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a minimum amount of Fe(III) are required, i.e., Fe(II)/
Fe(III) ratios between 0.2 and 5, to maintain the hexago-
nal shape of the GR structure. These ratios are in agree-
ment with ratios measured of synthetic and natural GR 
samples that typically range between 2 and 3 [3]. All 
three cluster models showed that the spin states of edge 
Fe atoms are significantly higher compared to Fe atoms 
located in the GR interior. This in turn means that Fe(II) 
and Fe(III) ions are unevenly distributed across the GR 
hydroxide sheet structure, with edge Fe atoms being 
more Fe(III)-like, while inner Fe atoms are more Fe(II)-
like; thus the GR interior is more reducing compared to 
the edge. The trends we found were consistent among 
several pure DFT calculations, hybrid functionals as well 
as MP2. A reason that may explain why we observed 
this uneven Fe(II)/Fe(III) distribution is that the chemi-
cal environment between edge and inner Fe atoms is dif-
ferent. The edge atoms have larger degree of flexibility 
compared to the more constrained inner atoms, which 
are more or less fixed in crystallographic positions. This 
could allow for a more unconstrained relaxation, includ-
ing the electronic degrees of freedom. Furthermore, the 
edge iron atoms bind to three or four hydroxyl ions, 
instead of bridging oxygen between iron atoms as done 
by the inner iron atoms. The different chemical environ-
ment creates a nonisotropic iron site, which could affect 
the electronic properties as well, including via a local 
dipole effect.

Evidently, this GR model excluds the presence of 
charge-balancing interlayer anions, which potentially 
could affect the local Fe(II)/Fe(III) distribution, i.e., elec-
tronic properties, across the GR hydroxide sheet. How-
ever, it is still worth making some initial comparisons 
to experimental observations here. Taking the example 
of the reduction of chromate, Cr(VI), by sulphate GR, 
some studies argued that Cr(VI) is reduced in the inter-
layer after sulphate exchange with chromate [25, 29–31], 
which would support our observations. In contrast, oth-
ers argued for Cr(VI) reduction to occur at  GRSO4 parti-
cle edges [26]. Similarly, the reductions of U(VI) [15] and 
 C2Cl4 [21] by GR are argued to occur on the GR edges 
which seems to be contrary to our finding that the reduc-
tion capacity tends to be higher in the interior of GR 
crystals. However, the charge hopping mechanism pro-
posed by Wander et al. [32] could explain why reduction 
can occur on the edge, even if it is less reactive than the 
central part of GR. Indeed, electron microscopy images 
of Cr(VI) reacted sulphate GR often show reaction rims 
with oxidized Fe (oxyhydr) oxide phases, while the GR 
interiors seem to get fully dissolved [25], which may be 
another indication that GR interiors are more reactive, 
i.e., more reducing, and that electrons can readily trans-
fer from GR interior to its edges.

Lastly, our study also suggests that the B-P functional 
with a TZVP basis set gives reasonable results for the 
electronic distribution in GR, which opens up possibili-
ties for modelling solvation behavior of interlayer mole-
cules using the implicit solvent method COSMO-RS [50].
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